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Two programs have been developed to calculate the one-phonon thermal diffuse scattering included in 
measured integrated intensities of Bragg reflections for cubic crystals. Both include the anisotropy of the 
diffuse scattering correctly within the continuum elasticity approximation, and both allow an approx- 
imate inclusion of the effects of the wavelength distribution of the primary beam. One program, re- 
stricted to co-scans, includes primary beam divergences approximately using three experimental reflec- 
tion profiles to describe the weighting function in reciprocal space. The second program, applicable to 
both co-scans and 0: 20-scans, neglects the primary beam divergences but has the advantage of being 
approximately two orders of magnitude faster than the first. Calculations have been made with these 
programs for several cases to illustrate the dependence of the included thermal diffuse scattering correc- 
tion on various factors and to compare with the values obtained from previous approaches. 

Introduction 

Measurements of integrated intensities of Bragg re- 
flections from a single crystal generally must be cor- 
rected for included thermal diffuse scattering if accurate 
values are required, since this diffuse scattering peaks 
strongly at the reciprocal lattice points and is not elim- 
inated by the usual background subtraction. An ac- 
curate calculation of this correction is quite difficult, 
as is seen from the recent review by Cochran (1969); 
and the methods developed by Cooper & Rouse (1968) 
and Skelton & Katz (1969), while more realistic than 
the earlier approaches of Nilsson (1957), Annaka 
(1962), and Pryor (1966), still have retained two major 
approximations: (a) the thermal diffuse scattering is 
assumed to be spherically symmetric about a reciprocal 
lattice point, neglecting both possible elastic anisotropy 
and the non-sphericity arising from the differences be- 
tween longitudinal and transverse mode contributions; 
and (b) the effects of primary beam divergences and 
wavelength distributions and of sample mosaic spread 
are ignored. The present work offers an improvement 
on both of these points, in that the anisotropic nature 
of the scattering is included correctly (within the long 
wavelength, continuum elasticity approximation) and 
the wavelength distribution and angular divergences 
of the primary beam are treated by first order approxi- 
mations. It still is restricted to one-phonon scattering 
by acoustic modes of small wave-vector and to crystals 
of cubic symmetry. 

7el 

Fig. 1. Geometry of the experiment in the plane of diffraction. 

Theory 1 

The finite resolution in an actual experimental set-up 
causes the power received by a fixed detector for a fixed 
crystal orientation to be proportional to a weighted 
average of the crystal's intensity distribution over a 
volume in reciprocal space surrounding the point spe- 
cified by the mean incident and scattered beam wave 
vectors. The weighting function (or resolution func- 
tion) for this averaging represents the combined effects 
of all the contributing instrumental factors, and its 
analytical form can be quite complicated, so in general 
it seems more practical to describe it by means of ex- 
perimental measurements. The weighting function va- 
ries with scattering angle, however, so we have looked 
for an approximate method of description that would 
avoid requiring separate sets of measurements for each 
different angle. 

Fig. 1 sketches the usual experimental geometry in 
the plane of diffraction. Unit vectors so and s represent 
the mean directions of the incident and scattered radia- 
tion, respectively; 2 is the mean wavelength; angles 
and fl (not shown), lying in and perpendicular to the 
diffraction plane, respectively, measure the difference 
in direction of a particular incident ray, s~, from that 
of so; and angles J and ~ (not shown), in and perpen- 
dicular to the plane, respectively, measure the difference 
in direction of a particular scattered ray, s', from that 
of s. The mean diffraction vector is 

H = ( s - s o ) / 2  (1) 

and the diffraction vector for radiation of wavelength, 
Lt, and directions s~ and s' is 

H ' = H + A  (2) 

where, for small divergences and wavelength differences, 

~ J 8 (4,-2) 
A--- e l +  ~-e2+ ~ e 3  ~ H .  (3) 

The [e,] are a non-orthogonal set of unit vectors, with 
ex and e2 both in the diffraction plane, el _I_ So, e2 _k s, 
and e3 (not shown) perpendicular to the plane; and 
8=fl+¢. 
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The form of equation (3) suggests our approxima- 
tion. We assume that the weight at a point q with re- 
spect to the mean diffraction vector H can be written as 

w(H, q)=~.  A ( q +  2~-____~2 H) . f t . ( 2  0 , (4) 

where 
A(p) =A(PI)" A(P2) • J~(P3) (5) 

for 
p =plei  q-pzez-bp3e3 • (6) 

The experiment is then completely described in terms 
of a wavelength distribution function, Jr., and three 
'divergence' distribution functions fl, J~, and J~, to be 
measured by appropriate scans through reflections, and 
these four functions are considered to be independent 
of scattering angle. This method of description is ac- 
curate, provided crystal mosaic spread and irradiated 
dimensions are negligible, divergences and relative 
wavelength spread are small, the detector area is rec- 
tangular and has uniform sensitivity, and the primary 
beam power distribution can be written as the product, 
G(~). B(fl). L(X0. It seems to be a reasonable first 
approximation to many real experiments. 

The scattered power received by a fixed detector for 
a fixed crystal orientation is then given as 

)3 
p=IeR2 sin-~-~ I I l w(H, q)J(H + q)d3q , (7) 

where Jf l-I+q) is the intensity in electron units of the 
scattering under consideration at the point, H + q ,  in 
reciprocal space; Ie is the electron unit, the intensity 
of scattering by a free electron; R is the distance from 
sample to detector; 20 is the scattering angle; and the 
functions defining w(H, q) in equations (4)-(6) have 
been normalized so that 

~fL(2d = 1 
i 

~. I J~(pl) dpx-- 1 (8) 

A(0) =A(0) = 1 

Note that our diffraction vectors and reciprocal space 
quantities do not include the factor, 2zr, that is incor- 
porated there in some systems of notation (e.g. Coch- 
ran, 1969). 

Consider now the integrated scattering, E, measured 
in either an co-scan or a 0: 20-scan,* where the crystal 
rotates about e3 with constant angular velocity, co, 
through a small angle, f2, which takes it through the 
reflecting position for a Brags reflection with reciprocal 
lattice vector, ~. We describe this in terms of a dis- 
placement, r=rer ,  of the weighting function through 
reciprocal space at a constant velocity, ~er, 

E=IPdt  
23 

=IeR2 Si-n~-I I l l  w(z, q-rer)J(z+q)d3q dr T '  (9) 

• Also sometimes called g2: 20-scan. 

~ m 

where 

where er is a unit vector in the direction of motion and 
r ranges from ri < 0 to r :>  0. For o3-scans, er [[ (z × e3) 
and : = o3(2 sin 0)/2, and for 0: 20-scans, er [[ z and : = 
o3(2 cos 0)/2. Rearranging terms and putting :=o3br, 
we obtain 

l e R  2 ,,]3 
co sin 2O I I I W('r, q)J('r +q) d3q (10) 

W(z, q )=b ;  -x I w(~, q - r e  D dr .  (11) 

The function W(z, q) gives the integrated weight act- 
ing on the point ~ + q  as the weighting function, w, 
moves through reciprocal space. It measures the frac- 
tion of the incident beam that can scatter into the 
detector with the diffraction vector extending to the 
point ~ + q in the crystal's reciprocal space during the 
scan, and it has the value unity whenever the entire 
incident beam can so contribute. For an ideal experi- 
ment, with no instrumental factors other than a finite 
receiver slit, W is unity throughout the volume in 
reciprocal space around ~ 'swept out' by the receiving 
slit during the scan and is zero elsewhere, while for a 
real experiment, with the same scan and slits, W is 
unity through a smaller volume around • and varies 
continuously from one to zero over some region sur- 
rounding this inner volume, the details of which depend 
on the weighting function of the actual experiment. 

The integrated intensity of the Brags reflection meas- 
ured during this scan is obtained by using the delta 
function-like crystal interference function for J(~ +q)  
in equation (10). Since W ( z , q ) = l  wherever this 
J (~+q)  is non-zero if the entire reflection is to have 
been measured, the integration is just the usual one 
(James, 1948), giving 

En- I'R2 23 NIF[2 (12) 
co sin 20 v ' 

where N is the number of unit cells in the crystal, v is 
the volume of a unit cell, and F is the structure factor 
of the reflection at z. 

The integrated diffuse scattering measured during 
this scan can then be written 

P 

ED---EB ~iff-~ I I I W(% q)JD(~+~d3q, (13) 

where JD (1; + q) is the intensity in electron units of the 
diffuse scattering at the point z + q in reciprocal space. 

An integrated background often subtracted from 
such a measurement is obtained by multiplying the 
average of the background rates at the ends of the 
scan by the scan time, f2/o3. From equations (7) and 
(12) this can be written 

ISS E'~ = En NIF]~ £2 ½[w(x, q- r~er) 

+ w('c, q-- r/er)]JD(.c + q) d3q. (14) 

We confine our attention now to one-phonon ther- 
mal diffuse scattering from acoustic modes, neglecting 
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contributions from optic modes and from multi- 
phonon processes as being weaker and slower varying 
and thus probably more effectively eliminated by the 
usual background subtraction. The scattering at a 
point, z+g,  is then due just to phonons in the three 
acoustic branches with the wave-vector, g. We assume 
that [g] is small enough throughout the region of mea- 
surement that dispersion can be neglected and that 
equipartition of energy holds for these modes at the 
temperature of the measurement. The intensity in elec- 
tron units of the scattering at the point, x +g, is then 
written 

1 [ (x+g )"  egy]Z (15) 
J"(* + g ) -  NlFl~Zv k s r  " lg-~ ~ -OPt, 

where 0 is the density of the crystal; eej is a unit vector 
in the direction of polarization of the phonon with 
wave-vector g in the j th  branch ( j =  1, 2, 3); Vgj is the 
velocity of that phonon; and k s and T are the Boltz- 
mann constant and the absolute temperature, respec- 
tively. This expression is exact for X-ray scattering, 
but it is only approximate for neutron scattering 
(Cochran, 1963; Willis, 1969). 

Equation (15) is valid for crystals of any symmetry, 
but its use requires a knowledge of the polarization 
vectors and velocities of phonons of arbitrary wave 
vector, and to determine these requires solving the 
equations of continuum elasticity theory for each wave 
vector. For crystals of cubic symmetry this equation 
has been manipulated into an alternative form (Waller, 
1925; Nilsson, 1957) that avoids the need for explicit 
solutions of the elasticity equations and thus is more 
amenable to calculations; the result can be written 

Jz~(x + g ) -  NIFIZ ksT  C___(x, g____)_) (16) 
v D(g)  ' 

where, if we introduce Miller indices, dimensionless 
wave-vector components, and ratios of elastic constant 
combinations through the relations, 

= ha~' + ka~ + la~' 
g =g,a~' +g2~g +g3a;' 
g~ = g~ + g~ + g~ 
X 1 = ( C l l  - C12 - 2C44)/C44 
x2= xl( Gx + G2)/ C,I 
X 3 = x 2 ( C l l  -t- 2C12 + C44) /Cl l  

x4 = ( CIz + C44)/ CxI (17) 

the a* being the axes of the cubic unit cell in reciprocal 
space, then 

(hZ + k2 + l 2) ( 1 
C(~, g)= 

C44 g 4 +  - C l l  

x (h2g~ + k2g~+ 12g~)+ x2 
C44 

2 2 2 2 2 2 2 2 2 2X4 
x(h g2gs+k g3gl+ l gxg~) C44 

1 . )  g2 

× [hkgl gz(xx g2 +g2)+ klg2gs(x~ g ~ +g2) 
+ lhg3g1(xl g2 + g2)] (18) 

and 
D(g)=g6+x2g2(g2g2+g22g2+g2g2) 2 z 2. +xaglg~g3 (19) 

Note that for elastic isotropy, xl = x2 =x3 = 0. 
Equations (16)-(19) give a complete description of 

the diffuse scattering for cubic crystals, including all 
anisotropic effects, for Ig[ ~ la*l. It is sufficiently com- 
plicated, however, that previous investigators have 
chosen to approximate this by an isotropic scattering, 
obtained by averaging equation (16) over all orienta- 
tions of the wave-vector g, which in our notation has 
the simple form, 

(Jz)(x+g)>= NIFI2 kT  B (h2+k2+l 2) j f  1 v T "  g--~ (20) 

where the parameter, : ( ,  has been evaluated in various 
ways (Nilsson, 1957; Walker & Chipman, 1969). 

Finally, combining equation (16) with equations (13) 
and (14) and noting that d3q=dgldgzdg3/v, we obtain 

ED =~x = kBT ~ l  C(x, g) dgldgzdg3 (21) 
E. v j j.l W(L g) - D ( - ~  

and 

E~ , kBT £2 f f f ½ [w(.r, g_&er ) 
E B  --  Oq - -  v " 

+ W('L g - -  ryer)] - C - ( - ~ - g ) d g m d g z d g  3 ( 2 2 )  
D(g) 

and the background-corrected, 'measured' integrated 
intensity, EM, is related to the Bragg integrated inten- 
sity, Es, by 

EM= Es(1 q- ~1 - ~',) 
=Es(1 +a) (23) 

Calculation 1 

We have developed a computer program to calculate 
the included thermal diffuse scattering correction, ~, 
that treats the diffuse scattering anisotropy properly 
and the instrumental resolution factors approximately 
using the methods and equations of the preceding 
section. The program is restricted to cubic single crys- 
tals, to oo-scan measurements, to rectangular receiver 
slits, and to measurements in which the scan is sym- 
metrical through a reflection and from which a 
weighted average of the background at the ends of the 
scan has been subtracted. As stated earlier, the calcula- 
tion is restricted to one-phonon scattering, to acoustic 
modes, and to small divergences and scans so that dis- 
persion can be neglected and equipartition of energy 
assumed. 

The program, called XTALTDS 6, is written in For- 
tran IV for an IBM 7094 and is described in detail else- 
where (Walker & Chipman, 1970a). It involves a three- 
dimensional numerical integration (viz. equations (21) 
and (22) combined) for each reflection. The cubic net 
of positions at which the integrand is evaluated is 

A C 26A - 5 
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chosen so that the reciprocal lattice point, where g = 0, 
is equidistant from the eight nearest positions on the 
net. This, together with a simple extrapolation proce- 
dure, eliminates any difficulty with the singularity in 
the integrand at g=0.  The amount of calculation 
needed to obtain a desired precision depends on many 
factors; the results to be presented here, which were 
calculated to a precision of approximately 0.1%, used 
on the average roughly 25,000 points in the integral 
and 1-5 minutes of IBM 7094 computing time per re- 
flection. 

Using this program we have carried out calculations 
for a number of different 'experiments' to get an idea 
of how e depends on various factors. Our procedure 
has been to make the calculations for a basic experi- 
ment, with reasonable parameters, and then to inves- 
tigate how the results change as usually one factor at 
a time is varied; there are too many variables to make 
it practical to consider many other combinations. Since 
the effects of the different factors generally are not in- 
dependent, it should be recognized that some of these 
results may not be appropriate for experiments that are 
very different from this one. 

Our basic experiment is the following: (a) The pri- 
mary beam power angular distribution is given by the 
product, G(7)" B(f l ) ,  where each of these functions is 
a Gaussian modified to go to zero at + 3a. The distri- 
bution normal to the diffraction plane (hereafter called 
vertical) has ~rs =0-20 °, and the distribution in the dif- 
fraction plane (hereafter, horizontal) has crr =0.15 °, so 
the total zero-to-zero vertical and horizontal diver- 
gences are, respectively, 1.2 ° and 0.9 °. (b) The primary 
beam is strictly monochromatic, with 2=0.71140 A, 
midway between the wavelengths of Mo Kel and 
Mo Kc~2. (c) The receiver slit is square, intercepting a 
3.0 ° angle (i.e. + 1.5 °) both vertically and horizontally. 
(d) The crystal rotation during the scan is t'2=2.5 °. 
(e) The crystal is tungsten, chosen for its nearly per- 
fect elastic isotropy (2C44/(Cn-C12)= 1.008). Its mo- 
saic spread and irradiated dimensions are negligible. 
Its temperature is 300 ° K. 

The values of the correction, e, calculated for a set 
of reflections for this basic experiment are plotted as 
the points in Fig. 2a as a function of the sum of the 
squares of the Miller indices of the reflection. The re- 
flections range from the (200) to the (820). The right- 
hand boundary of the figure marks the value of 
h z + k 2 + l 2 at which 0 = 90 °, and the vertical dashed 
line marks the limit for experiments with a real Mo Ke 
doublet, beyond which a part of the reflection will fall 
outside the receiver slit. The values of c~ vary smoothly 
with increasing h 2 + k 2 + l 2, varying almost linearly over 
the middle part of the range, and reach a maximum 
approximately at the doublet experimental limit. Most 
of the calculations are for a crystal oriented with an 
[001] axis vertical; a few cases repeated for other orien- 
tations or for other reflections with the same h 2 + k 2 + l z 
give relative differences in e of less than 0.1%, as could 
be expected from the very small elastic anisotropy. The 

size of the correction here is unusually small, only ap- 
proximately 4 % at its greatest, which is a result of the 
strong elastic constants in tungsten; at the other ex- 
treme, had the crystal been lithium or sodium, with 
their weak elastic constants, the correction would have 
been greater by a factor of approximately 20. 

The smooth curve in Fig. 2(a) gives the results cal- 
culated for this experiment on adopting the Cooper- 
Rouse-Skelton-Katz (CRSK) approximations, that is, 
using a spherically averaged, isotropic scattering and 
neglecting the primary beam divergences. The CRSK 
results here agree fairly well overall with the pre- 
sent calculations, but there is a systematic difference, 
the CRSK results being greater than the present cal- 
culations at low angles and less than the present cal- 
culations at high angles, the relative difference varying 
from + 16 to - 5  %. The angular dependence of this 
difference arises almost completely from the approxi- 
mation of using a spherically averaged scattering; the 
true surfaces of constant scattering for this elastically 
isotropic crystal are ellipsoidal, not spherical, with 
two equal, longer (~ 1.7x) axes perpendicular to the 
reciprocal lattice vector [see equations (16)-(19)], and 
this, together with the angular dependence of the shape 
of the volume in reciprocal space swept out by the 
receiver slit during the scan, readily explains the an- 
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Fig. 2. (a) The correction, ~, for tungsten reflections, calculated 
for the basic experiment described in the text, as a funct ion 
of  the sum of the squares of the Miller indices of  the reflec- 
tions. The points  are our  calculated values, and the smooth  
curve gives the results calculated with the C R S K  approach.  
The figure boundary  at right corresponds to 0 = 90 °, and the 
vertical dashed line marks  the limiting angle for experiments 
with Mo K0c doublet  radiation. (b) The percentage change in 
these values of e when the radiat ion is changed f rom one 
mean wavelength to the two wavelengths of  Mo KCtl and 
Mo Kct2. 
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gular dependence of the error in the CRSK results. 
The error due to the neglect of the primary beam diver- 
gences is smaller and almost independent of angle, as 
will be discussed below. 

Our basic experiment has employed strictly mono- 
chromatic radiation in order to facilitate the compari- 
son with the CRSK calculations, where such mono- 
chromaticity is assumed. We now let the primary beam 
have two wavelengths, those of Mo Kal and Mo Kc~2, 
each with the same angular distribution of power as 
before, with weights of ] and ½, respectively; this should 
give a reasonable approximation to an experiment with 
a real Mo Ka doublet, where the separation of the 
lines is approximately 13 times the full width at half 
maximum of the broader line, and the intensities are 
as given (Compton & Allison, 1935). The percentage 
change in the value of a caused by this change from 
one wavelength to two wavelengths in the experiment 
is plotted for the different reflections in Fig. 2(b). There 
is a reduction in the value of ~ for each reflection, and 
the amount of the reduction increases smoothly and 
at an increasing rate with increasing angle to approxi- 
mately 10 % at the (820) reflection. The size of this 'two 
wavelength effect' is such that the values of a for this 
'real' experiment are now smaller than the CRSK 
results [the curve of Fig. 2(a)] for all reflections. 

Our basic experiment uses a receiver slit 3.0 ° high 
and 3.0 ° wide and a crystal rotation f2=2.5 °, these 
numbers seeming suitable for an experiment with the 
given primary beam divergences and Mo Ke doublet 
wavelengths that is to be able to measure reflections 
up to fairly high angles. We consider next how the 
values of a depend on these three angular quantities, 
in turn varying each one singly while keeping all other 
factors of the experiment constant. The percentage 
change in a found on varying the slit height is given 
in Table 1 for five representative reflections. One notes 
that the sensitivity to height changes is small overall, 
smaller for the low angle reflections, and that it de- 
creases rapidly with increasing height. The percentage 
change in c~ found on varying the slit width is given 
in Table 2 for the same five reflections. The values of 

are appreciably less sensitive to width increases than 
they are to height increases, a change in width from 
3.0 ° to 4.5 ° increasing the a's 3 to 6 times less than is 
caused by such a change in the receiver height. The 
percentage change in a found on varying the amount 
of crystal rotation is given in Table 3 for four of the 
reflections. The values of a depend much more strongly 
on this variable than on the two slit dimensions, and 
this dependence is almost linear for the low angle re- 
flections. These results for the dependence on slit 
height, width, and crystal rotation are repeated with 
generally only minor differences when the calculations 
are made using the two Mo Ke doublet wavelengths 
instead of the single wavelength. 

To investigate the effects of elastic anisotropy, we 
change the sample to a single crystal of fl '-CuZn with 
51.86 at .% Cu, for which 2C44/(Cn-C~2)=9"21 

Table 1. The percentage change in c~ for five reflections 
caused by varying the slit height & the basic experiment 
hZ+kZ+l  2 4 16 36 50 64 
Height  (°) 

6.0 1-6 4.8 7"9 8-8 8-4 
4.5 1-2 3.7 5.8 6.3 6.1 
3.O 0 0 0 0 0 
1.5 - 6 - 5  - 1 4 " 3  - 1 8 . 5  - 1 9 . 2  - 1 8 . 5  

Table 2. The percentage change in c~ for five reflections 
caused by varying the slit width in the basic experiment 

h2+k2+12 4 16 36 50 64 
Width (°) 

4"5 0"1 1"0 1"9 1"9 1"0 
3.0 0 0 0 0 0 
1 . 5  - 1"2  - 5 . 8  - 1 1 . 6  x x 

Note :  x indicates that  par t  of  the Bragg reflections of  a 
M o  Ke double t  will fall outs ide  the slit. 

Table 3. The percentage change & ~ for jbur reflections 
caused by varying the amount of  crystal rotation in the 

basic experiment 

h2 + kZ + lZ 16 36 50 64 
[2(°) 
6"0 88"4 63"9 52"8 41 "7 
5.0 69"4 52"7 44"6 35"8 
4"0 46"0 37"0 32"4 27"0 
3.5 32"0 26"7 24"0 20"6 
3"0 16"8 14"5 13.4 12-0 
2"5 0 0 0 0 
2.0 - 1 8 . 3  - 1 6 " 8  - 1 6 " 4  --16"4 
1"5 - 38"3 - 35"9 - 35.5 x x 
1-0 x x  x x  x x  x x  

N o t e :  x x indicates that  the crystal  ro ta t ion  is no t  sufficient 
to Bragg reflect all of  the pr imary  beam for  a M o  K0c 
doublet .  

(McManus, 1963), retaining the other factors of the 
basic experiment. The values of ~ calculated for a series 
of reflections for this experiment are plotted as the 
points in Fig. 3(a) as a function of the sum of the 
squares of their Miller indices. As in Fig. 2, the right 
boundary of the figure marks the abscissa value at 
which 0 = 90 °, and the dashed line marks the limit for 
experiments with a real Mo K0~ doublet. In contrast 
to the results for tungsten, the values of ~ for this anis- 
otropic crystal vary quite irregularly with increasing 
h z + k 2 + l z and depend on the orientation of the crystal 
for each reflection. The calculations for a majority of 
the reflections have been given for two different orien- 
tations and calculations have been included for dif- 
ferent reflections with the same value of h z +kZ+ l z to 
illustrate the spread in the possible values of a at a 
given hZ+k2+l z produced by the elastic anisotropy. 
One sees that this spread can be quite large; for ex- 
ample, the value of a for a (622) reflection here is 0.124 
if an [0i1] direction is vertical and is 0.169 for a [233] 
vertical. The substantial size of the value of 0c should 
also be noted. The smooth curve gives the results ob- 
tained for this experiment with CRSK-type calcula- 

A C 26A - 5* 
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tions. It does not form a very good approximation to 
the present calculations; its spherical averaging pre- 
cludes any crystal orientation dependence, and it seems 
to give somewhat higher values for most reflections 
than the averages of our calculations, so relative dif- 
ferences of over 20 % can be found at most angles and 
differences of over 40 % can be found in a number of 
instances. 

The percentage change in the values of ~ for this 
fl '-CuZn experiment found on using the two Mo Ke 
doublet wavelengths instead of the single wavelength 
are plotted for the different reflections and various crys- 
tal orientations in Fig. 3(b). As in the case for tungsten, 
there is generally a reduction in the value of c~ for each 
reflection, but anisolropy causes this to vary quite ir- 
regularly for the different reflections and for different 
crystal orientations. In fact, in the case of the (622) 
reflection used in the example above, this two-wave- 
length effect reduces the value of e by 2.9 % if the [233] 
direction is vertical, but it actually increases the value 
of a by 0.6 % if the [0T1] is vertical. 

Finally, to investigate the effect of the angular diver- 
gences of the primary beam, we have compared the 
values of c~ for tungsten obtained with the basic experi- 
ment primary beam angular distributions, using the 
two Mo Ke doublet wavelengths, the basic receiver 
slit, and varying amounts of crystal rotation, with the 
corresponding values of e obtained when the primary 
beam divergences are set equal to zero, all other fac- 
tors remaining the same. The percentage change in 
found on changing to the primary beam with zero an- 
gular divergence is given as a function of th~ amount 
of crystal rotation in Table 4 for four representative 
reflections. One notes the very interesting result that 
these changes in e are really quite small for all except 
small amounts of crystal rotation, and they are ap- 
proximately the same for all reflections. The effect of 
the primary beam divergences here becomes appreci- 
able only when the crystal rotation is not much larger 
than the minimum amount needed to Bragg reflect all 
of the primary beam. The effect is of course a function 
of the other experimental factors too, but the few 
cases that we have checked indicate that, for condi- 
tions that are not extreme, the effect generally remains 
small; for example, repeating the comparison for a 
crystal rotation, f2=2.5 °, but with a slit height of 1.5 ° 
instead of 3.0 ° , we find that the average percentage 
change in a on eliminating the primary beam diver- 
gences is 3-3 %, where the change for the 3.0 ° slit height 
was 1.9 %. Note that in this second example the slit 
height is only 0.3 ° greater than the total vertical spread 
of the primary beam. The effect also depends some- 
what on the sample; we have repeated this comparison 
using the basic slit and a crystal rotation, C2 = 2.5 °, for 
the anisotropic crystal, fl '-CuZn, and find that, while 
the average percentage change in c~ is 1.9 % as before, 
the specific change depends much more on the partic- 
ular reflection and on the crystal orientation and varies 
between 1.0 and 2.6 %. 

Table 4. The percentage change in c~ for four reflections 
caused by eliminating the angular divergence of the 
primary beam of the basic experhnent as a function of 

the amount of crystal rotation 

hZ+k2+l 2 16 36 50 64 
t2 (°) 

6.0 0.9 0.9 1.0 1-0 
5.0 0.9 1-0 1.0 1-1 
4"0 1-1 1.1 1.1 1-2 
3.5 1.2 1.2 1.2 1.3 
3.0 1.6 1-4 1.5 1"5 
2.5 2.1 2.0 1.8 1.9 
2.0 2-9 2.9 2.9 3.2 
1"5 5"0 5"3 6"7 x x  
1"0 x x  x x  x x  x x  

Note: x x indicates that the crystal rotation is not sufficient 
to Bragg reflect all of the primary beam for a Mo Ke 
doublet and the basic angular distribution. 

Theory 2 

The results of the previous paragraph indicate that the 
neglect of the angular divergences of the primary beam 
will cause only a small error in the included thermal 
diffuse scattering correction, c~, for a rather wide range 
of experimental conditions. We consider now how the 
equations for this correction simplify when such diver- 
gences are neglected. 

Let the primary beam consist first of just one wave- 
length, 2~. The integrated weighting function, W(x, g), 
for the experiment is then unity throughout the (ap- 
proximately) parallelepiped volume, G', swept out by 
the receiver slit during the scan and is zero elsewhere, 
so equation (21) becomes: 

I IS g) OCX ~ . . . .  dgldg2dg3 • (24) 
v v~ D(g) 

The fixed crystal weighting function, w(x, g), has a con- 
stant value throughout the rectangular section of  in- 
finitesimal thickness defined by the receiver slit and 
is zero elsewhere. Then, using equation (11), equation 
(22) can be written 

2SS cq=' kBTv " x2 a0212 sin 20. .~ -- dA (25) 
~=x stj D(g) 

where S~I and S~2 are the two end faces of V~ corre- 
sponding to the start and finish of the scan. 

Equation (24) can be reduced further by virtue of the 
1/g 2 dependence of its integrand.* Let dO be a dif- 
ferential solid angle drawn from X, the reciprocal lat- 
tice point in Vi, that intercepts a differential area, dA, 
on the surface of V~ at a distance g from X, with the 
vector from X to dA that defines the direction of dO 
making an angle ~0 with the normal to dA, and let da 
be the differential area parallel to dA that is inter- 
cepted by dO at some smaller distance, q, from X. If 

* We thank B.T.M.Willis for the suggestion that this 
simplification might be possible. 
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we divide the part of the volume of Vt enclosed by 
dO into the differential volume elements, d V=dadq 
cos (0, then, since da ocq2 and since C(x, q)/D(~ ocl/q 2, 

C('c, q) C(x, g) 
---D(~-- dadq cos ~0= --D(g~- dAdq cos ~0, 

a constant, independent of q, for all volume elements 
within dO. Integration with respect to q is immediate, 
and equation (24) becomes 

k n T f f  C(,,  g) ~1-  ~ -  st D(g) gcos~0dA (26) 

where the integral is over the surface of Vs. Since the 
surface of V~ is made up of planes, Sij, on each of 
which g cos ~0 = nj, the constant perpendicular distance 
from X to that plane, equation (26) can be written 

kBT ~,~ ~ ~ C(~, g) dA ~ - j~nj=_l (27) 
D(g) 

which is obviously much easier to evaluate than equa- 
tion (24). The similarity of this equation to equation 
(25), the expression for the background factor, sim- 
plifies the calculation of the combined correction fac- 
tor, c~; indeed, in symmetrical scans with only one wave- 
length, there is a straight-forward cancellation of terms, 

since, in the same indexing notation, one has the rela- 
tion 

a0 
nl +/72-= 2- g2 sin 20.  

Finally, if the primary beam contains several wave- 
lengths, one calculates the correction factor for each 
wavelength, where the appropriate volume V~ for the 
ith wavelength is obtained by displacing the volume 
for some central wavelength, 2, by the amount 
~(2-20 /2 ,  and then sums the appropriately weighted 
results. This procedure can be shortened if the scan 
has been symmetrical for the central wavelength (i.e. 
if the reciprocal lattice point X is a center of symmetry 
for the volume V for the wavelength 2) for then if any 
two wavelengths, 24 and 2j, with arbitrary weights, are 
equally spaced about 2, that is, if ( 2 - 2 0 = - ( 2 - 2 j ) 1  
one only has to calculate the correction for one wave- 
length and multiply this by the sum of the two weights 
to obtain the contribution of both. Thus, for example, 
for symmetrical scans in which the beam has the two 
Mo Kc~ doublet wavelengths, the correction factor is 
given by a single calculation in which the volume V~ 
is shifted parallel to ~ by the amount (in our dimen- 
sionless units), (h 2 n t- k 2 q- 12)u2. (21 - 22)/(21 q-- 22). 

Calculation 2 

0"2 
-CuZn 

. 

° ~ o  
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Fig. 3. (a) The correction, 0~, for/~'-CuZn reflections, calculated 
for the basic experiment, as a function of the sum of the 
squares of the indices of the reflections. The points are our 
calculated values, given in most cases for two different crystal 
orientations and for different reflections with the same value 
of h2+kZ+l z. The smooth curve gives the results of the 
CRSK approach. The figure boundary corresponds to 
0=90 ° , and the vertical dashed line marks the doublet ex- 
perimental limit. (b) The percentage change in these values 
of 0~ when the radiation is changed from one mean wave- 
length to the two wavelengths of Mo Kc(1 and Mo Ko~2. 

We have developed a second computer program to 
calculate the correction factor, c~, that neglects primary 
beam divergences but retains the correct treatment of 
the diffuse scattering anisotropy and allows the ap- 
proximate inclusion of wavelength distribution effects 
using the methods and equations of the preceding sec- 
tion. Tiffs program is again restricted to cubic single 
crystals, to rectangular receiver slits, and to measure- 
ments in which the scan is symmetrical through the 
reflection and from which a weighted average of the 
background at the ends of the scan has been sub- 
tracted, but it can treat both co-scan and 0:20-scan 
measurements. The restrictions on the calculations, one 
phonon scattering, acoustic modes, etc., are the same 
as before. 

This program, called XTDS 2, is written in Fortran 
IV for an IBM 7094 and is described in detail in a 
separate report (Walker & Chipman, 1970b). It involves 
a two-dimensional numerical integration [equations 
(27) and (25) combined] for each reflection. The calcu- 
lations to be presented here, which were again carried 
to a precision of approximately 0.1%, used on the 
average roughly 2,500 points in the integral and ap- 
proximately 1 second of IBM 7094 computing time 
per reflection for the basic experiment, which, exclud- 
ing input/output and other tape operations, represents 
a gain in speed of approximately two orders of magni- 
tude over the first program. 

We have used tiffs program to calculate the values 
of e for several experiments for both 0:20-scans and 
co-scans to investigate the dependence on the type of 
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scan. The basic experiment for these calculations is the 
same as before, except, of  course, that the pr imary 
beam now has no angular  divergence. 

The values of  c~ for a set of  reflections for this basic 
experiment for the 0:20-scan show the same general 
features as are found for the co-scan results; they vary 
smoothly with increasing h 2 + k z + l z, varying almost 
linearly over the middle part  of  the range, and reach 
a m a x i m u m  at approximately the same angle as that 
for the co-scan. The C R S K  calculations agree rather 
more  poorly with these values than they do in the 
co-scan case; the systematic difference here is such that 
the C R S K  results are smaller than the present values 
for all but  the lowest angle reflection, the relative dif- 
ference varying f rom + 2  % at the (200) reflection to 
- - 1 6 %  at the (820) reflection. The 'two wavelength 
effect' causes a reduction in the value of  c~ similar to 
that found in the co-scan case, with the magnitude of  
the reduction for the 0:20-scan more dependent on 
other parameters such. as the amount  of  crystal rota- 
t ion; for the basic experiment the reduction is some- 
what  larger for the 0:20-scan than for the co-scan, 
amount ing to approximately 13 % at the (820) re- 
flection. 

A quantitative comparison of  the values of ~ for the 
two types of  scan for this basic experiment is given by 
the solid curve of  Fig. 4, where the ratio of the value 
of  ~ for the 0: 20-scan to that for the co-scan with the 
same 2.5 ° crystal rotation is plotted as a function of  
h 2 + k a + l 2. The 0: 20-scan gives values of  c~ consider- 
ably larger titan those for the co-scan at low angles, 
but  the ratio changes sufficiently with angle that at the 
high angles the co-scan values are the larger. This is an 
illustration of  how the values of  c~ can depend on the 
type of  scan, but  it should be emphasized that the 
result depends quite strongly on the particular factors 
of  the experiment. For example, i f  we change the 
amount  of  crystal rotation to 5-0 ° , keeping all other 
factors the same, we find that the ratio of  the value of  

for the 0: 20-scan to that  for the co-scan is given by 
the long-dashed curve of  Fig. 4, quite different f rom 
the result for the basic experiment, while if  the receiver 
slit is reduced from 3.0 ° square to 1.5 ° square for this 
5.0 ° crystal rotation, keeping all other factors con- 
stant, the ratio of  the 0:20-scan correction to that for 
the co-scan is now given by the short-dashed curve of 
Fig. 4, different f rom both of  the first two results. This 
last result is similar to that reported by Skelton & Katz 
(1969). 

Finally, it is interesting to compare more directly 
how the values of ~ for this basic experiment depend 
on the amount  of  crystal rotation for the two types 
o f  scan. Table 3 gave the percentage change in ~ for 
co-scan measurements  for four reflections on varying 
the amount  of  crystal rotation in the basic experiment, 
where the pr imary beam had the divergences described 
earlier; these results are repeated with only minor  dif- 
ferences here, where the primary beam has zero an- 
gular divergences. The corresponding percentage 

changes in ~ for 0: 20-scan measurements  are given in 
Table 5. The changes for the 0: 20-scan are somewhat 
smaller than those for the co-scan at large rotations, 
and they are much more sensitive to a change to the 
two doublet  wavelengths, and there is the interesting 
inversion that in the 0: 20-scans the high angle reflec- 
tions show the almost linear dependence of  e on the 
amount  of  crystal rotation. 

Discussion 

Our object in undertaking this work was to develop a 
method for calculating the correction for included 
thermal diffuse scattering in single crystal integrated 

Table 5. The percentage change in ~ for 0:20-scan meas- 
urements of  four reflections on varying the amount o.[ 

crystal rotation in the second basic experiment 
h 2 -t- k 2 + l 2 16 36 50 64 

(o) 

6"0 21"2 31"9 41"8 59-4 
5"0 18-9 28"2 36"2 49-6 
4"0 15-2 22"0 27"3 35-3 
3"5 12"2 17"1 20"7 25"7 
3"0 7"6 10"2 11-8 14-0 
2"5 0 0 0 0 
2"0 - 13"6 - 14"8 - 15"4 - 16-4 
1"5 -36"8 -34"5 -34"1 -35"1 

intensity measurements  that would treat several phys- 
ical features of the problem in a more  realistic manner  
than had been done in previous calculations. The ap- 
proach is summarized in the section Theory 1; it in- 
cludes the anisotropy of  the diffuse scattering correctly 

/ 
1 "4 1 I 

/ !  

/ / / / / / !  

1-o I / f - ~  "I" 

0"6 ~ ' ~  

I 20 i 401 i 610 I 
h2+k2+P 

Fig.4 .The ratio of the correction, ~, for tungsten reflections 
measured with a 0:20-scan to that for og-scan measurements 
made with the same crystal rotation, as a function of the 
sum of the squares of the indices of the reflections. The solid 
line gives the result for the second basic experiment, with a 
3-0 ° square slit and 12=2.5°; the long-dashed curve is ob- 
tained if the crystal rotation is changed to f2 = 5.0°; and the 
short-dashed curve is obtained when f2=5.0 ° and the slit 
is changed to 1-5 ° square. 

8:2 e -%--- 
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and the divergences and wavelength distribution of the 
primary beam by a first approximation. The approxi- 
mate procedure used to include the primary beam 
characteristics also will include to some extent the 
effects of the crystal mosaic spread and the irradiated 
sample dimensions, even though these have not been 
discussed explicitly, if the experimental divergence dis- 
tribution functions are measured with reflections from 
the sample itself. The method is still limited to cubic 
crystals, because relations equivalent to equation (16) 
have not yet been derived for crystals of other sym- 
metries, and to one-phonon scattering, and it is more 
accurate for X-ray scattering than for neutron scatter- 
ing, where further approximations are required. 

A computer program, X T A L T D S  6, employing this 
approach, but restricted to co-scans to simplify the 
programming, has been developed and used to inves- 
tigate the dependence of the correction on various fac- 
fors. These calculations show tb.at the anisotropy of 
the scattering causes effects that may be significant even 
for elastically isotropic crystals and that can be quite 
large and orientation dependent for crystals that are 
elastically anisotropic. They show also that the doublet 
nature of the usual X-ray wavelength distribution can 
cause appreciable effects at the higher angles, a result 
that should also hold for the broader neutron wave- 
length distributions usually used. They also yield the 
very interesting observation that the neglect of the an- 
gular divergences of the primary beam in the calcula- 
tion causes only a small error in the correction for a 
rather wide range of experimental conditions, those 
where the slit dimensions and crystal rotation are not 
too near the minimum values required by the experi- 
ment. This suggests that the fine details of the primary 
beam characteristics are not important in such a cal- 
culation, and thus that this program should be able to 
produce values for the correction accurate to 1% or 
better for many cases, despite the simplicity of its ap- 
proximations. It also has led us to develop a different 
method of calculation for those cases in which the 
error due to the neglect of the angular divergences of 
the primary beam can be tolerated; this second ap- 
proach, summarized in the section Theory 2, is the 
basis for the computer program, XTDS 2, which treats 
both co-scans and 0:20-scans and is approximately two 
orders of magnitude faster than the first program, 
XTA L TDS 6. 

Calculations have also been included to show how 
the correction can vary with other factors such as slit 
dimensions, amount of crystal rotation, and type of 
scan. Some of these results, such as the weak depen- 
dence on slit height and the even weaker dependence 
on slit width, are particularly interesting and suggestive 
as to the design of experiments. However it must again 
be emphasized that the effects of these various factors 
are generally not independent, so the results obtained 
here may turn out to be quite different from the cor- 
responding results for experiments that are very dif- 
ferent from this one. This is clearly demonstrated by 

the strikingly different results for the ratio of the 
0: 20-scan correction to that for the comparable co-scan 
for the three experiments plotted in Fig. 4. 

One limitation of the present approaches must be 
made clear. The programs we have developed calculate 
only the correction for one-phonon scattering, ignor- 
ing two-phonon and higher order processes. It seems 
reasonable to expect that the correction for multi- 
phonon scattering will be much smaller than that for 
one-phonon scattering, but no quantitative measure of 
their relative sizes has yet been determined. Thus, when 
the correction for one-phonon scattering is large, the 
neglect of the multi-phonon contribution may be a 
significant source of error when very accurate results 
are required. 

The two approaches developed here are certainly 
more accurate than any other approach that has pre- 
viously been used, but they are also more complex and 
more costly to use, since they involve numerical inte- 
gration in either three dimensions (XTALTDS 6) or 
two dimensions (XTDS 2). The best of the previous 
approaches is that of CRSK, which needs only a one- 
dimensional numerical integration, and it has been 
compared with the present calculations to illustrate 
the errors that can result from this approach. Still 
simpler, more approximate approaches include using 
the analytical expression derived by Nilsson, or treat- 
ing the correction as an error in the Debye-Waller fac- 
tor. The decision as to which approach to use in mak- 
ing this correction will depend of course on many fac- 
tors, including the size of the correction, the error 
that can be accepted, and the cost that can be sup- 
ported. Our second approach, with the program, 
XTDS 2, or a modification thereof, seems to offer the 
best combination of accuracy and speed for general 
purposes. 

We are indebted to L. D. Jennings for many helpful 
discussions. 
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